Density reconstruction in multiparameter elastic full-waveform inversion
نویسندگان
چکیده
منابع مشابه
Image-guided full waveform inversion
Multiple problems, including high computational cost, spurious local minima, and solutions with no geologic sense, have prevented widespread application of full waveform inversion (FWI), especially FWI of seismic reflections. These problems are fundamentally related to a large number of model parameters and to the absence of low frequencies in recorded seismograms. Instead of inverting for all ...
متن کاملMultiparameter Full-waveform Inversion for Acoustic VTI Medium with Surface Seismic Data
SUMMARY In this study, we develop a strategy for multiparameter FWI for acoustic VTI medium with surface seismic data. Through parameterization analysis and synthetic tests, we find that it is more feasible to invert for the parameterization as vertical and horizontal velocities instead of inverting for the parameterization as vertical velocity and anisotropy fields. We develop a hierarchical a...
متن کاملFull-waveform inversion in an anisotropic elastic Earth - Can we isolate the role of density and shear wave velocity?
Five parameters are needed to describe VTI anisotropy in 2-D elastic media. With conventional streamer data, an optimal parameterization for full-waveform inversion (FWI) consists in using the horizontal velocity vh, the anellipicity parameter η, and the parameter that relates the horizontal-to-vertical velocity, ε. This parameterization, derived with a pseudo-acoustic formulation of the wave e...
متن کامل3D acoustic frequency-domain full-waveform inversion
We present one of the first attempt at implementing a massively parallel frequency-domain full-waveform inversion algorithm for imaging 3D acoustic media. The inverse method is based on a classic steepest-descent algorithm. The algorithm was designed so that one or several frequencies are inverted at a time. Wave propagation modeling, a key component of the inversion algorithm, is performed wit...
متن کاملA projected Hessian for full waveform inversion
A Hessian matrix in full waveform inversion (FWI) is difficult to compute directly because of high computational cost and an especially large memory requirement. Therefore, Newton-like methods are rarely feasible in realistic largesize FWI problems. We modify the BFGS method to use a projected Hessian matrix that reduces both the computational cost and memory required, thereby making a quasiNew...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geophysics and Engineering
سال: 2017
ISSN: 1742-2132,1742-2140
DOI: 10.1088/1742-2140/aa93b0